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Abstract.

A new fully numerical method is presented which employs multiple Poincaré sections to find quasi-periodic orbits. The
main advantages of this method are the small overhead cost of programming and very fast execution times, robust behavior
near chaotic regions that leads to full convergence for given family of quasi-periodic orbits and the minimal memory required
to store these orbits. This method reduces the calculation of the search for the two-dimensional invariant torus to a search
for the closed orbits, which are the intersection of the invariant torus with the Poincaré sections. Truncated Fourier series
are employed to represent these closed orbits. The flow of the differential equation on the invariant torus is reduced to maps
between the consecutive Poincaré maps. A Newton iteration scheme makes use of the invariancy of the circles of the maps
on these Poincaré sections in order to find the Fourier coefficient that define the circles to any given accuracy. A continuation
procedure that uses the incremental behavior of the Fourier coefficients between close quasi-periodic orbits is utilized to
extend the results from a single orbit to a family of orbits. Quasi-Halo and Lissajous families of the Sun-Earth Restricted
Three-Body Problem (RTBP) around the L1 and L2 libration points are obtained via this method. Results are compared with
the existing literature.
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INTRODUCTION

The Libration points of the Earth-Moon and Sun-Earth have many advantageous properties that make them desirable
for space missions, such as a stable thermal environment for infrared space telescopes and continuous coverage of the
backside of the Moon for communication with future Moon bases. These properties have enabled existing and planned
missions, such as the James Webb Space Telescope JWST) and Wilkinson Microwave Anisotropy Probe (WMAP),
among others. With the many future missions planned for these regions, the need for efficient approaches for trajectory
design is apparent.

Since the mass of the satellite is so small relative to the larger bodies, it is sufficient to consider the Restricted Three
Body Problem (RTBP) for the design of trajectories [1]. In order to minimize station-keeping, periodic orbits are of
great interest. Using various methods, Farquhar [2, 3], Hénon [4], Breakwell [5], Howell [6] and others successfully
obtained and studied the three types of periodic orbits around the libration points, namely halo, vertical and horizontal
Lyapunov orbits.

Recently, a proposal has been put forward to place a new generation of formation flying missions, such as TPF-
I, Con-X, or the New World Discoverer, in orbits about the Sun-Earth L2 libration point. One way of reducing fuel
consumption is to place all of the spacecraft in the constellation on a quasi-periodic orbit, thus maintaining a maximum
separation. Because of the large separation distances, however, linear analysis and control is not possible.

In this paper, we only briefly review the literature for the RTBP; for background on general methods to find invariant
tori, see [7]. There have been, though, a number of studies targeted at finding the quasi-periodic orbits around the
libration points. Howell et al. used an ad hoc shooting method to find the Lissajous orbits [8]. However, the period
of the orbit cannot be specified and there is no apparent way of continuation. Barden applied this method to find
quasi-halos [9, 10]. Jorba et al. used the normal form method to find the center manifold around libration methods
[11, 12]. This method can be used to find the quasi-periodic orbits but the periods of the orbits cannot be specified or
be based on series expansions. This method cannot achieve high accuracy. Gémez et al. used semi-analytic methods
(Lindstedt-Poincaré procedure) to find the quasi-periodic orbits around libration points. A significant drawback of this
method is that it has a low radius of convergence, and that a new code must be written for each orbit family. Coding this



semi-analytic algorithm is time-consuming and is thus difficult to implement [13]. Gémez and Mondelo used a refined
Fourier analysis to find the full families but this method is very slow and it is implemented on a cluster of parallel
computers| 14, 15]. In this paper we present a fast, efficient, and easy to implement approach for finding quasi-periodic
trajectories around Halo or Lyapunov L2 orbits.

We structure the paper as follows: First, an overview is given of the periodic and quasi-periodic orbits around the
libration points. Next, the numerical procedure that finds the quasi-periodic orbits using a single Poincaré section is
explained. The procedure is then generalized to multiple sections. The continuation procedure for extending the results
to a family of periodic orbits is discussed, as are the different implementations of the method. Finally, the complete
Quasi-Halo and Lissajous families are obtained and a comparison with the literature is provided for the fixed period
and energy.

For the sake of conciseness, this paper focuses on the phase space around Sun-Earth L2 libration point. The results
can be extended trivially to other collinear libration points around Sun-Earth and Earth-Moon system.

FAMILIES OF PERIODIC AND QUASI-PERIODIC ORBITS AROUND L2

Periodic Orbits

The linear six-dimensional phase space around L2 is a center X center x saddle. For energy values close to that at
L2, where it is sufficient to consider only the linear approximation to the equations of motion, there exist two families
of periodic orbits; the Horizonal Lyapunov orbits, which are in the ecliptic plane, and the horizontally symmetric
figure-eight-shaped Vertical Lyapunov orbits. As the energy is increased, and nonlinear terms become important, the
linear phase space is broken and a new periodic family, Halo orbits, bifurcate from the Horizontal Lyapunov orbit
family. These orbits are three-dimensional and asymmetric about the ecliptic plane. Figure 1 shows the three distinct
periodic orbit families around L2.
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FIGURE 1. Periodic orbits around L2 libration point

Quasi-Periodic Orbits

The four-dimensional center manifold around L2 is occupied by quasi-periodic orbits of two different families:
The Lissajous family around the Vertical Lyapunov orbits, and the Quasi-Halos around the Halo orbits. These quasi-
periodic orbits reside on invariant tori about the corresponding periodic orbit. To visualize this four-dimensional center
manifold, which consists of all the periodic and quasi-periodic orbits, on a two-dimensional figure, we need to constrain
the center manifold by two dimensions. A convenient way of achieving this is to choose periodic and quasi-periodic
orbits which have the same energy, and to take a Poincaré section when these orbits cross the ecliptic plane. When we
do this we obtain Figure 3. Since this is a Poincaré section, the equilibrium points correspond to the periodic orbits of
the original system, while the closed curves correspond to the quasi-periodic orbits. This correspondence is shown in
Figure 3. Detailed approaches for obtaining these orbits are discussed in the following sections.
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FIGURE 2. Quasi-periodic orbits around L2
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FIGURE 3. All the periodic and quasi-periodic orbits around L2 shown on a Poincaré section of the ecliptic plane

FINDING QUASI-PERIODIC ORBITS VIA MULTIPLE POINCARE SECTIONS

We identify three main challenges associated with finding quasi-periodic orbits. The first is to minimize the time it
takes to program the software that numerically solves for the orbits. This reduces the threshold for researchers who
work on trajectory design. The second is to achieve reasonable execution times, allowing results to be obtained quickly
and “on the go”. The third is to improve the robustness of the method in order to get the very large regions of attraction
that are needed to obtain the full families of quasi-periodic orbits.

Symbolic methods such as the Lindstedt-Poincaré method [13] and the reduction to the center manifold [11, 12],



which depend on series expansions, are very slow because an exponential increase in the number of coefficients
is needed for every additional increase in the order of expansion. The speed problem can be overcome to a great
extent by programming a symbolic manipulator for the problem of interest, but this leads to a significant increase in
programming time. More importantly, some of these techniques have instability problems near resonances.

This led us to consider fully numeric methods. However, instead of taking a mesh on the whole surface, which
requires many points and is thus memory and CPU intensive, we considered only a section on the torus containing
the quasi-periodic trajectories and thus represented the full torus by only points on this section. These points must be
integrated for one period at each iteration step. The initial errors in our estimation of the section increase exponentially
with the highest Lyapunov exponent as the integration time increases. This is of great concern, especially for the
RTBP L2 case where the Lyapunov exponent is more than 103. The effect is more dramatic near resonance and chaotic
regions. To overcome this problem, we reduce the integration times by taking multiple sections on the torus, integrating
only between the consecutive Poincaré sections. The methodology is parallel to the multiple shooting method used in
two-point boundary value problems [16].

In what follows, we first introduce the methodology by explaining the procedure for a single Poincaré section. The
results are then extended to multiple Poincaré sections. We discuss different implementations using Poincaré sections
on phase space and time. Finally, a continuation method to find the full family of quasi-periodic orbits is introduced.

Finding Invariant Tori via a Single Poincaré Section

The first step in the procedure is to find a convenient Poincaré section. This can be either a section in time or space.
For visualization purposes, we assume that the section is taken in phase space, as shown in Figure 4. When choosing
the plane of the section, the main concern is to ensure that the velocity vector of the quasi-periodic orbit is as transverse
to the plane of section as possible. This reduces the possibility that the integrated points will not return to the Poincaré
section. Thus, a good candidate for the Poincaré section is the plane perpendicular to the velocity of the halo orbit
section. However, for the RTBP, a simple section on the ecliptic plane is also suitable. We used both types of Poincaré
sections for the results in this paper.

FIGURE 4. Converting the search for a torus problem of a differential equation to the search of the circle of a map

Instead of trying to find the torus of the full ordinary differential equation, our next aim is to find the closed orbits of
the Poincaré map. We expand the closed orbit in a truncated Fourier series with the expansion parameter 0, the angle
on the closed orbit. For instance, in the case where we took the Poincaré section on the ecliptic plane, i.e. z =0, the
expansion parameter becomes 6 = atan(} — :“’”) It is important to note that we need to parameterize the system such
that every point on the closed orbit is uniquely defined by one value of the parameter. For closed orbits with complex
shapes, other parameters, such as the ratio of the arc length between a specific point on the orbit and the full arc length
of the closed orbit [17], should be used to ensure uniqueness. For the RTBP, however, this simple parameter gives
satisfactory results.

We then take sample points, Xy , on the closed orbit:

XO = anfnm Qn



We map these points, P(Xy), by integrating the equations of motion until they intersect the Poincaré section,
Xr = PXo) = ¢rxe)(Xo);

The first variations of these equations are integrated along with X, for later use in the iteration process. As seen in
Figure 5, finding the quasi-periodic orbit is then reduced to solving for the Fourier coefficient vector Q that satisfies
the following equation,

F(Q = Xr—Y,0,em&0) = o.
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FIGURE 5. Schematic illustration of the numerical procedure for finding the invariant torus

One advantage of this formulation is that we can use a Newton iteration and get quadratically convergent solutions.
In Newton’s iteration, an initial guess Q! is iterated according to

DF(Q)- (@ -Q) = -F(Q)
until a satisfactory answer is reached. To find an explicit form for this equation, we write X as a matrix multiplication,
X = L,0e" = M(6)-Q
F then becomes,
F (Q) = XT - X9¢(X0)

= 0(M-Q)—My,,,-Q
We then take the derivative with respect to Q,
dXr dXy dX do dXr dXy

DF(Q) = 3 G0 — 0 axy ax. a0

= DP-M~—(DMs, ., Q) i -DP-M

where DP is the differential of the Poincaré map obtained from the first variation of the map integrated with X.
Employing Newton’s iteration, solutions converge usually within 3-4 iterations. An example of an iteration procedure
is shown in Figure 6. Here the sample points are shown with red crosses and the return maps are shown by blue circles.
After four iterations, all the estimates and the return maps are aligned on the same closed orbit.
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FIGURE 6. Iteration procedure in steps

Extension to Multiple Poincaré Sections

In order to overcome the potential instability that results from the long integration times, the invariant torus can be
cut by several Poincaré sections, as mentioned before. Figure 7 shows the closed orbits which we obtain when the tori
of interest are cut with multiple sections. As a result, all of these closed orbits in Figure 7 will be searched instead of
only the single one in the previous sub-section.
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FIGURE 7. Multiple Poincaré Section Procedure: Closed orbits obtained by sectioning invariant tori

The numerical procedure is similar to the single Poincaré section method but in this case, Q, the vector containing
the Fourier coefficients, is composed of the Fourier coefficients of each of the closed orbits,
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The invariance condition for these closed orbits to be on the same torus is
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Finally, as before, we apply Newton’s iteration to root finding,

DF(Q))-(@-Q)) = -F(Q)).

Different Implementations

Depending on how we choose the Poincaré section, the procedure can be implemented in different ways. If we take
a Poincaré section in phase space, the four-dimensional center manifold is constrained by two dimensions. The first
dimensional constraint is due to the Poincaré section, and the second one is due to the fact that the closed orbit we are
interested in is one-dimensional. As a result, we are left with two degrees of freedom to specify a unique orbit. Thus,
we can specify two constraints, which are properties of the orbit that are of interest. We can, for example, specify the
Hamiltonian and the size of the orbit. Since we are working on a Poincaré section, size can be specified by the area
which is enclosed by the closed orbit. Then, the constraint vector is augmented to include the new constraints,

F = [F; Hfixea — HQ) ; Areafiveq — Area(Q)).

Another implementation is to take a Poincaré section in time. This way we can specify the period of the quasi-periodic
orbit along with the integration direction for the return map. This is especially important for space missions that require
all the spacecraft to stay close to one another at all times. In this case, we have one more degree of freedom to specify
a unique orbit. We can do this by augmenting the error vector with a new constraint, such as the projected size along
one direction,

F = [F; Sizefivea — Size(Q); ...].

Continuation Procedure

Y

FIGURE 8. Continuation in the area variable

Once we obtain the Fourier coefficients for a given orbit, we would like to extend these results to find the complete
family of quasi-periodic orbits. In Figure 8, the continuation in the area variable is shown. While there is no intuitive
way to continue the coordinate variables, [x,y,z,%,, 2], the continuation of the Fourier coefficients is straight-forward,
since they vary incrementally between sufficiently close quasi-periodic family members. A low-order polynomial fit
is thus sufficient for continuing these parameters. Even a very simple linear continuation in the area variable, A, gives
satisfactory results,

Qx — Qi1

= A —A —_—.
Qi1 Qi+ (A1 — A) A — AL



COMPARISON OF THE RESULTS

The Poincaré section in time, where we specified the orbit period, is shown in Figure 9. Here we compare the results to
Gomez et al.’s [13]. By specifying the period of all the orbits to be the same as the base halo orbit’s, we can ensure that
the spacecraft stay close at all times. This is of great importance particularly for natural, control-free, formation-flying
missions. The main advantage of the Poincaré section approach is that, due to the numerical nature of the algorithm,
the calculations take only a few minutes of computation time, with minimal programming requirement. Note that,
since the Hamiltonians for these orbits are not equal to one another, the orbits may intersect.
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FIGURE 9. The Poincaré section of the invariant tori, where the period of all the orbits is equal to that of the base halo orbit. The
multiple Poincaré section method is employed on the left while the Lindstedt-Poincaré method is used on the right [13].

Utilizing the multiple sections approach, we found the complete Quasi-Periodic Orbit Families around the libration
points. Figure 10 shows the Poincaré section of the quasi-periodic family with constant energy on the ecliptic plane,
compares the results obtained by our multiple Poincaré method with Gémez & Mondelo’s refined Fourier analysis
[14, 15] and Gémez et al.’s Lindstedt-Poincaré analysis [13]. While it was not possible to obtaine the complete families
at [13] and a cluster of parallel computers was required to get the complete families at [14, 15], our method obtains
the complete picture and has a computation time of only a few minutes on a laptop computer.
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FIGURE 10. The Poincaré section of the complete quasi-periodic family around L2 with energy that is equivalent to the 500,000
km-sized halo orbit on the ecliptic plane (on the left). Similar results from [14, 15] (in the middle) and [13] (on the left).

CONCLUSIONS

This paper shows a fast, stable, easy-to-implement, and highly accurate multiple Poincaré sections method to find
quasi-periodic orbits. This method enables specification of the period, size and energy of the quasi-periodic orbit. A
continuation method to expand the results from a single solution to a family of orbits is introduced. Quasi-Halo and

Lissajous families around the L2 libration point are obtained via this method. The results compare favorably with the
existing literature.
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